Validation and verification of the OPI 2.0 System
نویسندگان
چکیده
PURPOSE The Ocular Protection Index (OPI) 2.0 System was developed to evaluate ocular surface protection under a natural blink pattern and normal visual conditions. The OPI 2.0 System implements fully automated software algorithms which provide a real-time measurement of corneal exposure (breakup area) for each interblink interval during a 1-minute video. Utilizing this method, the mean breakup area (MBA) and OPI 2.0 (MBA/interblink interval) were calculated and analyzed. The purpose of this study was to verify and validate the OPI 2.0 System for its ability to distinguish between dry eye and normal subjects, and to accurately identify breakup area. METHODS In order to verify and validate the OPI 2.0 System, a series of artificial images and a series of still image frames captured during an actual clinical session using fluorescein staining videography were analyzed. Finally, a clinical validation process was completed to determine the effectiveness and clinical relevance of the OPI 2.0 System to differentiate between dry eye and normal subjects. RESULTS Software analysis verification conducted in a set of artificially constructed images and in actual videos both saw minimal error rates. MBA and OPI 2.0 calculations were able to distinguish between the qualifying eyes of dry eye and normal subjects in a statistically significant fashion (P < 0.001 for both outcomes). As expected, dry eye subjects had a higher MBA and OPI 2.0 than normal subjects (0.232, dry eye; 0.040, normal and 0.039, dry eye; 0.006, normal, respectively). Results for the worst eyes and all qualifying analyses based on staining, forced-stare tear film breakup time, and MBA were numerically similar. CONCLUSION The OPI 2.0 System accurately identifies the degree of breakup area on the cornea and represents an efficient, clinically relevant measurement of the pathophysiology of the ocular surface.
منابع مشابه
Verification and Validation of Common Derivative Terms Approximation in Meshfree Numerical Scheme
In order to improve the approximation of spatial derivatives without meshes, a set of meshfree numerical schemes for derivative terms is developed, which is compatible with the coordinates of Cartesian, cylindrical, and spherical. Based on the comparisons between numerical and theoretical solutions, errors and convergences are assessed by a posteriori method, which shows that the approximations...
متن کاملTransforming Fuzzy State Diagram to Fuzzy Petri net
UML is known as one of the most common methods in software engineering. Since this language is semi-formal, many researches and efforts have been performed to transform this language into formal methods including Petri nets. Thus, the operation of verification and validation of the qualitative and nonfunctional parameters could be achieved with more ability. Since the majority of the real world...
متن کاملTransforming Fuzzy State Diagram to Fuzzy Petri net
UML is known as one of the most common methods in software engineering. Since this language is semi-formal, many researches and efforts have been performed to transform this language into formal methods including Petri nets. Thus, the operation of verification and validation of the qualitative and nonfunctional parameters could be achieved with more ability. Since the majority of the real world...
متن کاملInduction of triploidy in grass carp Ctenopharyngodon idella Valenciennes, 1844: Comparison of cold & heat shocks
Triploidy in grass carp, Ctenopharyngodon idella Valenciennes, 1844, was induced on fertilized eggs to compare cold and heat shocks. Two simplified methods explained for verification of triploidy in grass carp. The cold shock (7 ?C) was given in three treatments for 30 min starting 2.0, 2.5 and 4.0 min after fertilization. In cold shock, the start point (2.0 min after fertilization) showed th...
متن کامل